The HRDC domain of BLM is required for the dissolution of double Holliday junctions.

نویسندگان

  • Leonard Wu
  • Kok Lung Chan
  • Christine Ralf
  • Douglas A Bernstein
  • Patrick L Garcia
  • Vilhelm A Bohr
  • Alessandro Vindigni
  • Pavel Janscak
  • James L Keck
  • Ian D Hickson
چکیده

Bloom's syndrome is a hereditary cancer-predisposition disorder resulting from mutations in the BLM gene. In humans, BLM encodes one of five members of the RecQ helicase family. One function of BLM is to act in concert with topoisomerase IIIalpha (TOPO IIIalpha) to resolve recombination intermediates containing double Holliday junctions by a process called double Holliday junction dissolution, herein termed dissolution. Here, we show that dissolution is highly specific for BLM among human RecQ helicases and critically depends upon a functional HRDC domain in BLM. We show that the HRDC domain confers DNA structure specificity, and is required for the efficient binding to and unwinding of double Holliday junctions, but not for the unwinding of a simple partial duplex substrate. Furthermore, we show that lysine-1270 of BLM, which resides in the HRDC domain and is predicted to play a role in mediating interactions with DNA, is required for efficient dissolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and function of the regulatory HRDC domain from human Bloom syndrome protein

The helicase and RNaseD C-terminal (HRDC) domain, conserved among members of the RecQ helicase family, regulates helicase activity by virtue of variations in its surface residues. The HRDC domain of Bloom syndrome protein (BLM) is known as a critical determinant of the dissolution function of double Holliday junctions by the BLM-Topoisomerase IIIα complex. In this study, we determined the solut...

متن کامل

Top3α Is Required during the Convergent Migration Step of Double Holliday Junction Dissolution

Although Blm and Top3α are known to form a minimal dissolvasome that can uniquely undo a double Holliday junction structure, the details of the mechanism remain unknown. It was originally suggested that Blm acts first to create a hemicatenane structure from branch migration of the junctions, followed by Top3α performing strand passage to decatenate the interlocking single strands. Recent eviden...

متن کامل

Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase

The Bloom's syndrome helicase, BLM, is a member of the highly conserved RecQ family, and possesses both DNA unwinding and DNA strand annealing activities. BLM also promotes branch migration of Holliday junctions. One role for BLM is to act in conjunction with topoisomerase IIIalpha to process homologous recombination (HR) intermediates containing a double Holliday junction by a process termed d...

متن کامل

Novel pro- and anti-recombination activities of the Bloom's syndrome helicase.

Bloom's syndrome (BS) is an autosomal recessive disorder characterized by a strong cancer predisposition. The defining feature of BS is extreme genome instability. The gene mutated in Bloom's syndrome, BLM, encodes a DNA helicase (BLM) of the RecQ family. BLM plays a role in homologous recombination; however, its exact function remains controversial. Mutations in the BLM cause hyperrecombinatio...

متن کامل

Resolution of Recombination Intermediates: Mechanisms and Regulation.

DNA strand break repair by homologous recombination leads to the formation of intermediates in which sister chromatids are covalently linked. The efficient processing of these joint molecules, which often contain four-way structures known as Holliday junctions, is necessary for efficient chromosome segregation during mitotic division. Because persistent chromosome bridges pose a threat to genom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 24 14  شماره 

صفحات  -

تاریخ انتشار 2005